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Abstract

As AT agents become more capable, there is increasing interest in systems that can extend
their own capabilities through code generation and tool use. However, naive code generation
approaches produce unreliable outputs that may fail silently, introduce security vulnerabilities,
or behave unexpectedly—a phenomenon well-documented in evaluations of large language
model code generation [Chen et all [2021) Liu et al., |2023]. We present SYNTHESIS, a
federated capability ecosystem for safe AI self-extension that addresses these challenges
through three integrated mechanisms: (1) Test-Driven Synthesis, where comprehensive
test suites are generated before implementation code and capabilities must pass all tests
before deployment; (2) Graduated Trust, where newly synthesized capabilities start in
maximally restricted sandboxes and progressively earn privileges through demonstrated
reliability across quantified thresholds; and (3) Composition Over Creation, where the
system exhaustively searches a shared LIVE EXCHANGE and attempts to compose existing
verified capabilities before synthesizing new code, creating network effects that benefit all
participating agents. The architecture includes a trust bootstrapping protocol that solves
the cold-start problem for new deployments through founding validators and pre-verified
seed capabilities. Our empirical measurements show realistic success rates (50-70% one-shot,
70-85% after iterative refinement) while maintaining honest metrics about system limitations.
SYNTHESIS provides a foundation for Al systems that can safely adapt to new requirements
without compromising reliability, security, or auditability.

1 Introduction

The ability to extend one’s own capabilities in response to novel requirements represents a
significant step toward more autonomous Al systems. Recent advances in large language model
(LLM) code generation have demonstrated impressive capabilities on programming benchmarks
[Chen et al., 2021, |Austin et al., 2021, [Hendrycks et al., [2021], yet these same evaluations reveal
a critical gap: generated code that appears syntactically correct often contains subtle logical
flaws, unhandled edge cases, or security vulnerabilities |Liu et al., 2023].

Consider an Al agent that encounters a task requiring functionality it does not possess. The
naive approach—generating code and immediately deploying it—introduces several documented
risks:

e Silent failures: Generated code may produce incorrect outputs without raising errors, as
demonstrated by studies showing that superficially correct code frequently fails on edge
cases not present in limited test suites |Liu et al. 2023|


https://orcid.org/0009-0003-4541-8515
https://making-minds.ai

e Security vulnerabilities: Untested code may access unauthorized resources, expose
sensitive data, or contain injection vulnerabilities that static analysis alone cannot reliably
detect [Li et al., 2024, |Charoenwet et al., 2024]

e Unreliable behavior: Edge cases, boundary conditions, and error handling are often
inadequate in generated code, as even state-of-the-art models achieve only 70-85% pass
rates on straightforward programming tasks [Chen et al., 2021]

e Cascading errors: In multi-agent systems, faulty capabilities may corrupt downstream
processes, amplifying the impact of individual failures [Tran et al.l 2025|

These challenges are compounded when Al systems operate autonomously. Unlike human-
supervised code review, autonomous agents must validate their own generated code without
external verification—a fundamental tension between capability extension and safety that has
been identified as a core challenge in Al alignment |[Amodei et al., 2016].

We propose SYNTHESIS, a federated capability ecosystem that addresses these challenges
through three integrated principles:

Test-Driven Development. Before generating any implementation code, SYNTHESIS creates
comprehensive test suites based on capability requirements. Implementation is then iteratively
refined until all tests pass. This approach, grounded in decades of software engineering research
showing TDD produces more reliable software with fewer defects |[Beck, [2003|, Williams et al.
2003, lemp, 2016, ensures that generated capabilities are demonstrably correct rather than merely
plausible-looking.

Graduated Trust. FEvery newly synthesized capability starts in a maximally restricted sandbox
with no network access, no filesystem access, and strict resource limits. As capabilities demonstrate
reliability through successful executions across quantified thresholds, they progressively earn
expanded privileges. This mirrors how trust and reputation systems operate in distributed
networks [Kamvar et al., 2003| Jgsang et al., 2007, |Granatyr et al., 2015|, adapting these insights
to the context of executable code modules.

Composition Over Creation. Before synthesizing new code, SYNTHESIS exhaustively searches
a shared LIVE EXCHANGE for existing verified capabilities and attempts to compose them into
solutions using various orchestration strategies [Milanovic and Malek| 2004, |Zhang et al.l 2025|.
Synthesis becomes the fallback rather than the default, reducing attack surface by preferring
proven implementations and creating network effects where every agent that contributes to the
ecosystem makes it more capable for all others.

The remainder of this paper is organized as follows. Section 2| reviews related work on code
generation, Al safety, and trust systems. Section (3| details the SYNTHESIS architecture including
the LIVE EXCHANGE, composition engine, and TDD synthesizer. Section[4] presents the graduated
trust system, scoring mechanisms, and bootstrapping protocol. Section [5| provides honest metrics
on synthesis success rates. Section [6] discusses limitations, philosophical foundations, and future
directions. Section [l summarizes our contributions.

2 Related Work

2.1 Code Generation with Large Language Models

Large language models have demonstrated impressive code generation capabilities across multiple
benchmarks. Codex [Chen et al., 2021| achieved 28.8% pass@1 on HumanEval (164 hand-crafted
programming problems), reaching 70.2% pass@100 with multiple samples. Subsequent work



introduced additional benchmarks: MBPP with 974 basic programming problems |Austin et al.|
2021], APPS with 10,000 competitive programming problems |Hendrycks et al., |2021], and
CodeXGLUE with 10 tasks across 14 datasets |Lu et al., [2021].

However, rigorous evaluation reveals significant limitations. |Liu et al. [2023] demonstrated
that existing benchmarks underestimate failure rates by 19-28.9% due to insufficient test cases—
many solutions that pass HumanEval fail on edge cases and boundary conditions. This finding
motivates our test-first approach: rather than trusting generated code that passes limited tests,
we generate comprehensive tests before implementation and iterate until all pass.

Code understanding models like CodeBERT |Feng et al., |2020] provide foundations for
semantic code search, enabling our capability matching and composition features. These models
support finding functionally equivalent code across different implementations, a key requirement
for our composition engine.

2.2 Test-Driven Development

Test-driven development (TDD) is a software methodology where tests are written before
implementation code |Beck, 2003|. Empirical studies demonstrate that TDD produces more
reliable software with fewer defects, though effect sizes vary by context [Williams et al., |2003|
emp, 2016|. Property-based testing extends TDD by generating test cases from specifications
rather than examples |Goldstein et al., [2024].

Recent work has applied TDD principles to LLM code generation. [Meta Al [2024] demon-
strated that LLM-generated test improvements achieved 73% acceptance rates at Meta, with
25% coverage improvements. Execution-guided synthesis [Chen et al., [2019] uses test execution
feedback to guide program generation, while DeepCoder |Balog et al., [2017| combines neural
networks with enumerative search guided by input-output examples.

Our approach extends this line of work by making TDD integral to a complete capability
lifecycle, from generation through graduated deployment, rather than a standalone code generation
technique.

2.3 Sandboxing and Container Security

The challenge of safely executing untrusted code has been addressed through various isolation
techniques. Containers, particularly Docker, provide lightweight isolation through Linux names-
paces and cgroups |Bernstein, 2014, Bui, 2015 Thiyagarajan and Nayak, |2025]. A comprehensive
survey of security isolation techniques [Shu et al., |2016] identifies trade-offs between isolation
strength and performance overhead.

Recent work on securing code evaluation environments |[Rabin et all [2025] addresses the
specific challenge of running LLM-generated code safely. Static analysis tools can detect common
vulnerability patterns |Li et al 2024, |Charoenwet et al., 2024], though they cannot guarantee
safety for arbitrary code. Our approach combines static analysis with runtime sandboxing and
graduated privilege escalation.

2.4 Al Safety and Agent Security

Safe exploration and capability containment are identified as core challenges in Al safety [Amodei
et al 2016]. Guidelines for Al containment |Babcock et al., [2017] emphasize defense in depth,
while recent work on agentic Al security [Datta et al., 2025, |Allegrini et al., 2025| identifies
specific threat models and mitigation strategies for autonomous Al systems.

Our graduated trust system addresses these concerns by ensuring that capabilities cannot
access sensitive resources until they have demonstrated reliability through extensive testing and
execution history.



2.5 Trust and Reputation Systems

Distributed trust systems have been extensively studied in peer-to-peer networks and multi-agent
systems [Jgsang et al., 2007, [Sabater and Sierra, |2005, Granatyr et al., 2015]. Key algorithms
include EigenTrust [Kamvar et al., 2003| for reputation aggregation and methods for trust
propagation in networks |[Guha et al.l 2004, [Shmatikov and Talcott, [2005].

These systems address challenges directly relevant to our context: bootstrapping (the cold-
start problem), weighted validation from different sources, and resistance to gaming. We adapt
these principles to capability trust, where “reputation” is determined by execution history and
validator approvals rather than peer ratings.

2.6 Multi-Agent Coordination and Tool Use

Multi-agent LLM systems have emerged as a paradigm for complex task solving |[Tran et al.,
2025|. AgentOrchestra [Zhang et al., 2025] demonstrates hierarchical agent orchestration, while
surveys on tool learning |Qu et al.l 2024] and agentic RAG [Singh et al., 2025] establish patterns
for capability integration.

The concept of LLMs as tool makers |Cai et al., 2024] directly motivates our synthesis pipeline:
rather than just using tools, agents can create reusable tools that benefit other agents. LLM
augmentation through composition |[Bansal et al., 2024] demonstrates that model capabilities can
be extended through structured combination, analogous to our capability composition approach.

Service composition research |Papazogloul [2003, Milanovic and Malek, 2004] provides ar-
chitectural patterns for orchestrating independent services, which we adapt to the context of
Al-synthesized capabilities.

3 Architecture

SYNTHESIS implements a multi-stage pipeline for capability acquisition, with each stage designed
to maximize safety and reliability while minimizing unnecessary synthesis.

3.1 System Overview

The resolution pipeline (Figure [1)) enforces a strict priority order that embodies the “composition
over creation” principle:

1. Exchange Search: Query the shared LIVE EXCHANGE for verified capabilities matching
the intent

2. Local Cache: Check locally cached capabilities from previous syntheses
3. Composition: Attempt to decompose the requirement and chain existing capabilities

4. Synthesis: Generate new capability via TDD only if composition coverage < 70%

This hierarchy creates network effects: every capability published to the Exchange makes
synthesis less necessary for future requests, progressively shifting the system toward composition-
dominant operation.

3.2 The Live Exchange

The LIVE EXCHANGE serves as the “app store” for capabilities—a centralized REST API that
enables network effects by making every verified capability available to all participating agents.
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Figure 1: The SYNTHESIS resolution pipeline enforces strict priority ordering: search before
compose, compose before synthesize. This hierarchy minimizes attack surface by preferring
proven implementations.

3.2.1 API Design

The Exchange is deliberately not an MCP server. It operates as a REST API because it must
serve multiple agents simultaneously, maintain persistent storage, and run verification workers
independently of any single agent session.

3.2.2 Verification Protocol

When an agent submits a capability to the Exchange:
1. The Exchange receives code, tests, and dependency manifest
2. A Docker sandbox is provisioned with declared dependencies
3. Tests execute against the implementation in isolation
4. Only if all tests pass is the capability marked verified=true

5. The capability becomes searchable for other agents

This creates a “test exchange” guarantee: every capability in the Exchange has passed its
own test suite in a controlled environment.

3.3 Capability Abstraction
Each capability is a self-contained module comprising:

e Implementation Code: Python function(s) implementing the capability



Table 1: Live Exchange API Endpoints

Endpoint Method Description

/search GET Query capabilities by intent (mandatory
before synthesis)

/download/{id} GET Retrieve capability code, tests, and depen-
dencies

/publish POST Submit new capability for verification

/stats GET Network metrics (downloads, success rates,

trust scores)

Test Suite: Comprehensive tests generated from requirements

Parameter Schema: JSON Schema defining input structure

Return Schema: Expected output type and structure

Dependencies: Declared Python packages with version constraints
e Metadata: Creation time, author, synthesis reasoning trace

e Trust Score: Current trust level and execution history

Capabilities are categorized by domain (computation, data processing, integration, analysis)
and indexed by both keywords and semantic embeddings to facilitate discovery.

3.4 Composition Engine (Agility Engine)
Before synthesis, the Agility Engine attempts to solve requirements through composition of

existing capabilities.

3.4.1 Decomposition and Planning

Given a complex requirement, the engine:
1. Decomposes the requirement into sub-tasks using LLM-guided parsing
2. Searches the Exchange and local cache for capabilities matching each sub-task
3. Plans execution chains using identified composition strategies

4. Calculates coverage percentage based on matched vs. unmatched sub-tasks

3.4.2 Composition Strategies
If composition coverage exceeds 70%, the plan executes directly. Below this threshold, synthesis
fills the gaps—but only for the uncovered sub-tasks, not the entire requirement.

3.5 TDD Synthesizer

When synthesis is unavoidable, the TDD Synthesizer generates reliable code through test-first
iteration.



Table 2: Composition Strategies

Strategy Description

EXACT MATCH Found a capability that satisfies the requirement di-
rectly

CHAIN Sequential: output of capability A feeds input of capa-
bility B

PARALLEL Independent: run A and B concurrently, merge results

TRANSFORM Adapter: convert A’s output format for B’s expected
input

HYBRID Combination of above strategies in a directed acyclic
graph

Algorithm 1 Test-Driven Synthesis

Require: Requirement r, max iterations n =5

Ensure: Capability ¢ or Failure
1: T < GENERATETESTSUITE(r) > LLM generates 5-10 test cases
2: code < GENERATEIMPLEMENTATION(7, T') > Initial implementation
3: fori=1tondo

4: results <~ EXECUTEINSANDBOX(code, T')

5: if all tests pass then

6: valid <— STATICANALYSIS(code) > AST safety checks
7: if valid then

8: return CREATECAPABILITY (code, T, r)

9: end if

10: end if

11: code <— REFINEWITHFEEDBACK (code, T', results) > LLM sees failures
12: end for

13: return Failure

3.5.1 Test Generation
The test generation phase (Algorithm , line 1) produces 5-10 test cases including:
e Normal cases: Typical inputs with expected behavior
e Edge cases: Empty inputs, None values, single-element collections
¢ Boundary conditions: Maximum values, overflow scenarios
e Error conditions: Invalid inputs, type mismatches

e Property assertions: Invariants that should hold for all inputs

3.5.2 Iterative Refinement

When tests fail, the LLM receives detailed feedback: expected vs. actual outputs, error messages,
and stack traces. This mirrors how human developers debug—seeing concrete failures and
adjusting implementation accordingly.

Our measurements (Section |5)) show that while one-shot synthesis succeeds only 40-60% of
the time, iterative refinement with test feedback raises success rates to 70-85%.



4 Trust System

4.1 Graduated Trust Levels

Capabilities progress through four trust levels based on empirical reliability, adapting principles
from distributed reputation systems [Kamvar et al., [2003, |Granatyr et al., [2015] to executable
code modules.

Table 3: Trust Level Progression

Level Requirements Permissions

UNTRUSTED New capability Max isolation: no network, no
filesystem, 512MB memory, 30s
timeout

PROBATION 10+ runs, 70%-+ success Limited resources: monitored net-
work for dependency install only

TRUSTED 50+ runs, 85%+ success Standard execution: reasonable
resource limits

VERIFIED 200+ runs, 95%+ success, human review Full privileges: network access, ex-

tended resources

Promotion is automatic when thresholds are met, with one exception: VERIFIED status
requires explicit human validation. This prevents gaming through artificial execution inflation
while allowing the majority of capabilities to operate autonomously.

4.2 Composite Trust Scoring

The trust score combines three factors, drawing on multi-factor reputation models [Jgsang et al.|
2007):

Scomposite = We - Remecutian + Wy - S’Ualidation + We - Scommunity (1)
where:
. __ successful executions :_, s . 1
® Rezecution = T ol excentions 1S the empirical reliability

o Syalidation = »_; Wi - v; is the weighted average of validator approvals

® Scommunity = log(1 + downloads) -log(1 + forks) captures ecosystem adoption

o Weights: w, = 0.4, w, = 0.4, w, = 0.2

The logarithmic community score prevents gaming through download inflation while still
rewarding genuine adoption.
4.3 Validator Roles and Weighting
Validators are weighted by role, following the principle that trust sources vary in reliability |Guha
et al., 2004]:
4.4 Trust Bootstrapping Protocol

New deployments face a cold-start problem: without trusted capabilities, nothing can be validated.
Our bootstrapping protocol addresses this challenge, which is well-documented in reputation
system literature |Jgsang et al., 2007):



Table 4: Validator Role Weights

Role Weight Description

FOUNDER 1.0 Initial network bootstrap validators

HUMAN REVIEWER 0.9 Human validators with code review
privileges

TRUSTED Al 0.7-0.9 Al systems with established valida-
tion track record

COMMUNITY 0.3 General community validators

Founding Validators: Register human administrators and trusted Al systems with
elevated trust privileges

. Seed Capabilities: Deploy hand-written, extensively tested implementations for common

operations (string transforms, JSON parsing, list operations, dictionary manipulation, text
analysis)

Pre-Validation: Founders validate seed capabilities, granting immediate TRUSTED
status

. Organic Growth: Trust propagates as new capabilities are synthesized, validated, and

proven through execution history

The default seed set provides a foundation of five essential capability categories, ensuring
that composition is possible from the first agent interaction.

4.5

Hardened Sandbox Implementation

The sandbox provides defense in depth through multiple isolation layers:

1.

Static Analysis: AST inspection for forbidden imports (os, subprocess, socket, pickle)
and dangerous patterns

Docker Isolation: Ephemeral containers with no host filesystem mounts, following
container security best practices |[Bui, 2015, |Shu et al. 2016]

Resource Limits: Memory (512MB), CPU (1 core), and timeout (30s) constraints,
adjustable by trust level

Network Control: Disabled for UNTRUSTED; allowed only for dependency installation
at PROBATION

. Audit Logging: Complete execution records maintained by the Observatory component

4.5.1 Warm Container Pools

Cold container startup introduces latency (30-60s for dependency installation). We address this
through warm container pools:

e Pre-built “fat images” with common dependencies (numpy, pandas, requests, json)

e Execution routed to warm containers when declared dependencies match

e Cold synthesis reserved for novel dependency combinations



5 Evaluation

5.1 Honest Metrics

We emphasize honest reporting over optimistic claims. Our measurements from development and
testing:

Table 5: Synthesis Success Rates (Development Testing)

Metric Value Notes

One-shot synthesis success 40-60% Varies significantly by task type
After refinement (5 iterations) 70-85% Test feedback improves results
Complex multi-dependency tasks 50-70%  External APIs, multiple packages
Average iterations to success 2.3 When synthesis eventually succeeds

These rates align with broader findings in code generation evaluation |Chen et al., 2021} Liu
et al., [2023]: simple tasks succeed reliably, while complex tasks requiring multi-step reasoning or
edge case handling remain challenging.

5.2 Factors Affecting Success

Success rates vary significantly based on:

e Task complexity: Simple arithmetic and string operations succeed at higher rates than
multi-step algorithms

e Requirement clarity: Well-specified requirements with examples yield better results
than vague intents

e Training data coverage: Tasks similar to common programming patterns succeed more
often

e LLM provider: Model capability directly impacts synthesis quality

5.3 Target Production Metrics

We define success criteria for production deployment:

Table 6: Target Performance Metrics

Metric Target Rationale

Synthesis Avoided Rate  >60%  Majority of requests satisfied by
search /composition

Exchange Hit Rate >40%  Network effects provide measurable
benefit

Mean Resolution Time <5s Search/compose path (not including
synthesis)

Trust Promotion Rate >T70% Most capabilities should reach
TRUSTED level

The “synthesis avoided rate” is particularly important: it measures whether the composition-
over-creation principle is working in practice.
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5.4 Safety Analysis

The graduated trust system provides defense in depth:
1. No capability can access the network until PROBATION level (10+ successful runs)
2. No capability can access arbitrary filesystem paths at any trust level

3. Human review is required for VERIFIED status, preventing fully automated privilege
escalation

4. Complete audit trails enable forensic analysis of any execution

5. Static analysis catches common dangerous patterns before execution

This layered approach follows principles identified in Al containment research [Babcock et al.|
2017, Amodei et al., 2016]: no single mechanism is sufficient, but their combination provides
meaningful protection.

6 Discussion

6.1 Philosophical Foundation

SYNTHESIS embodies several design principles that reflect a particular view of how Al systems
should operate:

Objective Validation Over Trust. Rather than assuming generated code is correct because
it “looks right” or because a model is “generally reliable,” we require objective evidence: all tests
must pass. This mirrors the scientific principle that claims require evidence.

Earned Trust Over Assumed Trust. Capabilities gain privileges through demonstrated
competence, analogous to how human developers earn increased responsibilities through track
record. This creates appropriate skepticism toward new code while rewarding proven reliability.

Honest Metrics Over Marketing. We report realistic success rates (40-85%) rather than
cherry-picked benchmarks. This transparency enables appropriate expectations and identifies
areas for improvement.

Collaborative Benefit Over Individual Gain. The LIVE EXCHANGE creates network effects
where contributions benefit all participants. This incentivizes sharing and reduces redundant
synthesis across the ecosystem.

6.2 Limitations

Several limitations constrain our approach:

e LLM Reliability: Success rates depend on underlying model capabilities, which vary by
task type and continue to evolve rapidly

e Sandboxing Overhead: Container-based isolation adds latency, particularly for cold
starts with novel dependencies

e Test Generation Quality: Tests are generated from requirements; sophisticated property-
based testing |Goldstein et al. 2024] remains future work
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e Gaming Resistance: Adversarial capabilities might pass tests while behaving maliciously
on inputs outside the test distribution

e Composition Coverage: The 70% threshold is somewhat arbitrary; optimal thresholds

may vary by domain

6.3 Known Design Challenges

We identify several challenges that require ongoing attention:

The Pip Problem. Installing packages in fresh containers takes 30-60 seconds. Warm container
pools address common cases, but novel dependency combinations still incur this latency.

Malicious Test Vectors. Uploaded tests could contain payloads that attack the verification
server. Our mitigation: tests execute inside Docker too, not just capability code.

Search Semantics. Keyword search may return wrong capabilities (“get stock price” might
match an HTML scraper vs. JSON API). Future work: index by input/output schema, prioritize
data shape matching.

Composition Ambiguity. Multiple valid ways to compose capabilities may exist. LLM-
guided planning with explicit strategy selection partially addresses this, but optimal composition
selection remains an open problem.

6.4 Future Directions

Several extensions would enhance SYNTHESIS:

1. Evolution Engine: Automatically generate improved capability versions based on usage
patterns and failure modes

2. Property-Based Testing: Generate tests that verify invariants rather than specific
examples |Goldstein et al., 2024]

3. Vector Search: Semantic capability discovery using code embeddings [Feng et al., |2020]
4. Cross-Language Support: Extend synthesis to Rust, TypeScript, and other languages

5. Federated Learning: Privacy-preserving capability sharing across organizational bound-
aries [Wu et al., 2024|

6. Formal Verification: Integrate formal methods for safety-critical capabilities

7 Conclusion

We presented SYNTHESIS, a federated capability ecosystem for safe Al self-extension through
test-driven development and graduated trust. By requiring capabilities to prove correctness
through comprehensive testing and earn privileges through demonstrated reliability, SYNTHESIS
addresses fundamental challenges in deploying Al-generated code safely.

Our key contributions include:

1. A TDD-based synthesis pipeline that generates tests before code, iterating until all tests
pass

12



2. A graduated trust system with objective promotion criteria and defense-in-depth sandboxing

3. A trust bootstrapping protocol that solves the cold-start problem through founding valida-
tors and seed capabilities

4. A composition engine that prioritizes reusing verified capabilities over synthesizing new
code

5. The LIVE EXCHANGE architecture that creates network effects benefiting all participating
agents

6. Honest metrics about synthesis success rates and system limitations

SYNTHESIS represents a step toward Al systems that can safely extend their own capabilities.
The combination of test-driven validation, graduated trust, and composition-first design creates
multiple layers of protection while enabling genuine capability extension. As Al systems become
more autonomous, frameworks like SYNTHESIS provide a foundation for balancing capability
with safety.
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